
SMSD-8.0LAN

SMART MOTOR DEVICES

https://smd.ee

PROGRAMMABLE STEP MOTOR
CONTROLLER SMSD-4.2LAN and SMSD-8.0LAN

Data communications protocol

Modbus TCP/IP version

2024

SMSD-4.2LAN
SMSD-8.0LAN

Tallinn Science Park Tehnopol, Akadeemia tee 21/6,
Tallinn 12618, Estonia

Phone: + 372 6559914,
e-mail: mail@smd.ee

url: https://smd.ee
2

1. Brief introduction ... 4
2. Data transmission ... 4
3. Authorization.. 5
4. Control settings .. 5

4.1. Motor configuration .. 5

4.2. Drive parameter settings .. 8

4.3. Monitoring of operation parameters ... 11

4.4. Input/output signals ... 12

5. Reading and writing user program ... 12
6. Changes in the transfer protocol when connecting via USB 15
Appendix A. Register table ... 16
Appendix B. Controller executing instructions ... 20

Executing instruction CMD_PowerSTEP01_SET_MODE 20
Executing instruction CMD_PowerSTEP01_SET_MIN_SPEED.......................... 20
Executing instruction CMD_PowerSTEP01_SET_MAX_SPEED 20
Executing instruction CMD_PowerSTEP01_SET_ACC 20
Executing instruction CMD_PowerSTEP01_SET_DEC 20
Executing instruction CMD_PowerSTEP01_SET_FS_SPEED 20
Executing instruction CMD_PowerSTEP01_SET_MASK_EVENT 21
Executing instruction CMD_PowerSTEP01_RUN_F ... 21
Executing instruction CMD_PowerSTEP01_RUN_R .. 21
Executing instruction CMD_PowerSTEP01_MOVE_F .. 21
Executing instruction CMD_PowerSTEP01_MOVE_R .. 21
Executing instruction CMD_PowerSTEP01_GO_TO_F 21
Executing instruction CMD_PowerSTEP01_GO_TO_R 22
Executing instruction CMD_PowerSTEP01_GO_UNTIL_F 22
Executing instruction CMD_PowerSTEP01_GO_UNTIL_R 22
Executing instruction CMD_PowerSTEP01_SCAN_ZERO_F 22
Executing instruction CMD_PowerSTEP01_SCAN_ZERO_R 22
Executing instruction CMD_PowerSTEP01_SCAN_MARK_F 22
Executing instruction CMD_PowerSTEP01_SCAN_MARK_R 22
Executing instruction CMD_PowerSTEP01_GO_ZERO 22
Executing instruction CMD_PowerSTEP01_GO_LABEL 22
Executing instruction CMD_PowerSTEP01_GO_TO ... 23
Executing instruction CMD_PowerSTEP01_RESET_POS 23
Executing instruction CMD_PowerSTEP01_RESET_POWERSTEP01 23
Executing instruction CMD_PowerSTEP01_SOFT_STOP 23

SMSD-4.2LAN
SMSD-8.0LAN

Tallinn Science Park Tehnopol, Akadeemia tee 21/6,
Tallinn 12618, Estonia

Phone: + 372 6559914,
e-mail: mail@smd.ee

url: https://smd.ee
3

Executing instruction CMD_PowerSTEP01_HARD_STOP 23
Executing instruction CMD_PowerSTEP01_SOFT_HI_Z 23
Executing instruction CMD_PowerSTEP01_HARD_HI_Z 23
Executing instruction CMD_PowerSTEP01_SET_WAIT 23
Executing instruction CMD_PowerSTEP01_SET_RELE 23
Executing instruction CMD_PowerSTEP01_CLR_RELE 23
Executing instruction CMD_PowerSTEP01_WAIT_IN0 23
Executing instruction CMD_PowerSTEP01_WAIT_IN1 23
Executing instruction CMD_PowerSTEP01_GOTO_PROGRAM 24
Executing instruction CMD_PowerSTEP01_GOTO_PROGRAM_IF_IN0 24
Executing instruction CMD_PowerSTEP01_GOTO_PROGRAM_IF_IN1 24
Executing instruction CMD_PowerSTEP01_LOOP_PROGRAM 24
Executing instruction CMD_PowerSTEP01_CALL_PROGRAM 24
Executing instruction CMD_PowerSTEP01_RETURN_PROGRAM 25
Executing instruction CMD_PowerSTEP01_START_PROGRAM_MEM0 25
Executing instruction CMD_PowerSTEP01_STOP_PROGRAM_MEM 25
Executing instruction CMD_PowerSTEP01_GOTO_PROGRAM_IF_ZERO 25
Executing instruction CMD_PowerSTEP01_GOTO_PROGRAM_IF_IN_ZERO . 25
Executing instruction CMD_PowerSTEP01_WAIT_CONTINUE 25
Executing instruction CMD_PowerSTEP01_SET_WAIT_2 26
Executing instruction CMD_PowerSTEP01_SCAN_MARK2_F 26
Executing instruction CMD_PowerSTEP01_SCAN_MARK2_R 26

SMSD-4.2LAN
SMSD-8.0LAN

Tallinn Science Park Tehnopol, Akadeemia tee 21/6,
Tallinn 12618, Estonia

Phone: + 372 6559914,
e-mail: mail@smd.ee

url: https://smd.ee
4

1. Brief introduction

The controllers SMSD-4.2LAN and SMSD-8.0LAN are designed to control stepper motors and provide

programming and control via USB or Ethernet. When operating over an Ethernet local network (“LA” indicator at the

front panel), the controller creates a socket for connecting a control user program or device. Data is transmitted over a

physical Ethernet line (TCP protocol).

This manual applies to the controllers with special firmware that provides control via the Modbus TCP/IP

protocol. The communication protocol using USB remains unchanged with the exception of the structure of the LAN

transmission parameters (see the description of the standard firmware protocol SMSD-4.2LAN and SMSD-8.0LAN).

2. Data transmission

Default Ethernet connection parameters:

· Node ID: 1
· MAC address: 0x01 0xF8 0xDC 0x3F 0x00 0x00
· IP address: 192.168.1.2
· Port: 502
· IP sub-network mask: 255.255.0.0
· Gateway: 192.168.1.1

These parameters can be changed afterwards by commands sent through a USB or Ethernet connection.

Data transmission via LAN is carried out in accordance with the standard Modbus TCP/IP protocol

(https://modbus.org/). Commands for writing and reading registers are transmitted in accordance with the register

table - Appendix A.

Transmission frame:

MBAP Header PDU

Transaction ID Protocol ID
(0 for Modbus)

Data length Node ID
Device address

Function
code

Data

2 bytes 2 bytes 2 bytes 1 byte 1 byte

Register types and function codes

Register type Size
Function code

Read multiple
registers Write single register Write multiple

registers
Discretes Input 1 bit 0x02 - -
Coils 1 bit 0x01 0x05 0x0F
Input Registers 16 bits (word) 0x04 - -
Holding Registers 16 bits (word) 0x03 0x06 0x10

SMSD-4.2LAN
SMSD-8.0LAN

Tallinn Science Park Tehnopol, Akadeemia tee 21/6,
Tallinn 12618, Estonia

Phone: + 372 6559914,
e-mail: mail@smd.ee

url: https://smd.ee
5

3. Authorization
Access to the controller data is protected by a 64-bit password with an authorization timeout of 1 second.

Before start working with the controller, it is needed to confirm a password. Authorization will be valid for the

current connection session.

Authorization procedure:

1. Write the password value to the Holding Registers 0x2100 and 0x2102.

2. Write the value 0 to the Holding Register register 0x2104

3. Read the authorization result from the Discrete Inputs register 0x2200.

After successful authorization (register value 0x2200 = TRUE), the controller provides access to all control

registers.

Address
HEX

Register
type Size Data type Register name Description

Authorization
2100 HR 32 UINT_HEX Password_LOW32 Low 32 bits of the password

(default value 0x89ABCDEF)
2102 HR 32 UINT_HEX Password_HIGH32 High 32 bits of the password

 (default value 0x01234567)
2104 HR 16 UINT_DEC Password_CMD Write value:

= 0 - authorization attempt
= 1 - change password

2200 DI 1 BOOL Access Displaying authorization status
FALSE - no access
TRUE - access is allowed

4. Control settings
4.1. Motor configuration

Motor configuration settings include operating and holding current, microstepping mode and control type

(current or voltage). Configuration parameters can only be changed when the motor phases are de-energized. Before

changing configuration parameters, ensure that the motor is in the de-energized (Hiz) state (Discrete inputs 0x1200).

Address
HEX

Register
type Size Data type Register name Description

Motor configuration
110A HR 16 UINT_DEC CURRENT_OR_VOLTAGE Control type
110B HR 16 UINT_DEC MOTOR_TYPE Motor model for the voltage control

mode
110C HR 16 UINT_HEX MICROSTEPPING Microstepping mode
110D HR 16 UINT_DEC WORK_CURRENT Operating current for the current control

mode
110E HR 16 UINT_DEC STOP_CURRENT Holding current

CURRENT_OR_VOLTAGE - Control type:

0 – voltage mode,
1 – current mode

SMSD-4.2LAN
SMSD-8.0LAN

Tallinn Science Park Tehnopol, Akadeemia tee 21/6,
Tallinn 12618, Estonia

Phone: + 372 6559914,
e-mail: mail@smd.ee

url: https://smd.ee
6

MOTOR_TYPE – Motor model for the voltage control mode:

Value Max. current
per phase,

Amp

Resistance
per phase,

Ohm

Inductance
per phase,

mH
Step angle Motor modelSMSD-4.2LAN SMSD-8.0LAN

0 0 - - - - No motor
1 1 1.33 2.1 2.5 1.8
2 2 1.33 2.1 4.2 0.9
3 3 1.2 3.3 3.4 0.9
4 4 1.68 1.65 3.2 1.8
5 5 1.68 1.64 3.2 0.9
6 6 1.2 3.3 2.8 0.8
7 7 1.68 1.65 2.8 1.8 SM4247
8 8 1.68 1.65 4.1 0.9
9 9 1.2 6 7 1.8

10 10 1.2 12.1 36.7 0.9
11 11 1.56 1.8 3.6 1.8
12 12 1.0 16.7 46.5 1.8
13 13 1.5 3.6 6 1.8
14 14 1.0 5.7 5.4 1.8
15 15 1.0 5.7 8 0.9
16 16 2.8 0.7 1.4 1.8
17 17 2.8 0.7 2.2 0.9
18 18 1.0 6.6 8.6 1.8
19 19 2.8 0.83 2.2 1.8
20 20 2.8 0.9 3.7 0.9
21 21 1.0 7.4 10 1.8
22 22 2.0 1.8 2.5 1.8
23 23 2.8 0.9 2.5 1.8
24 24 1.0 8.6 14 1.8
25 25 2.8 1.13 3.6 1.8 SM5776
26 26 2.8 1.13 5.6 0.9
27 27 2.0 1.2 4.6 1.8
28 28 2.0 4.8 18.4 1.8
29 29 2.0 1.5 6.8 1.8
30 30 2.0 6 7.2 1.8
31 31 2.8 0.7 3.9 1.8
32 32 2.8 2.8 15.6 1.8

33 33 4.2 0,375 3.4 1.8
SM8680
Parallel

connection

34 34 4.2 1.5 13.6 1.8
SM8680

Serial
connection

SMSD-4.2LAN
SMSD-8.0LAN

Tallinn Science Park Tehnopol, Akadeemia tee 21/6,
Tallinn 12618, Estonia

Phone: + 372 6559914,
e-mail: mail@smd.ee

url: https://smd.ee
7

35 35 4.2 0.45 6 1.8 -
36 36 4.2 1.8 24 1.8 -
37 37 4.2 0,625 8 1.8 -
38 38 4.2 2.5 32 1.8 -
- 39 6.0 0.6 6.5 1.8 -
- 40 6.2 0.75 9 1.8 -
- 41 5.5 0.9 12 1.8 -
- 42 6.5 0.8 15 1.8 -
- 43 8 0.67 12 1.8 SM110201

39 44 0.3 32 40 1.8 -
40 45 0.67 8.5 7.5 1.8 -
41 46 1.68 2.3 3.4 1.8 -
42 47 3.0 1.0 3.4 1.8 -
43 48 3.0 1.45 6.5 1.8 -
44 49 3.0 1.2 6.4 1.8 -
45 50 4.5 0.36 3.0 1.8 -
- 51 6.0 0.6 5.7 1.8 -
- 52 6.2 0.7 8.5 1.8 -
- 53 8.0 0.8 16 1.8 -
- 54 6.0 0.8 8.7 1.8 -

MICROSTEPPING – microstepping mode:
0 - 1
1 - 1/2
2 - 1/4
3 - 1/8
4 - 1/16
5 - 1/32
6 - 1/64
7 - 1/128

WORK_CURRENT - operating current for the current control mode. The motor operation current is calculated as
0.1Amp*Value; 1<=Value<=80. Available range for controllers SMSD-4.2LAN: 1 – 42; for controllers SMSD-8.0LAN: 1
– 80. The values are the next:

1 - 0.1A
2 - 0.2A
3 - 0.3A
4 - 0.4A
5 - 0.5A
6 - 0.6A
7 - 0.7A
8 - 0.8A
9 - 0.9A
10 - 1.0A
11 - 1.1A
12 - 1.2A

15 - 1.5A
16 - 1.6A
17 - 1.7A
18 - 1.8A
19 - 1.9A
20 - 2.0A
21 - 2.1A
22 - 2.2A
23 - 2.3A
24 - 2.4A
25 - 2.5A
26 - 2.6A

29 - 2.9A
30 - 3.0A
31 - 3.1A
32 - 3.2A
33 - 3.3A
34 - 3.4A
35 - 3.5A
36 - 3.6A
37 - 3.7A
38 - 3.8A
39 - 3.9A
40 - 4.0A

43 – 4.3A
44 – 4.4A
45 – 4.5A
46 – 4.6A
47 – 4.7A
48 – 4.8A
49 – 4.9A
50 – 5.0A
51 – 5.1A
52 – 5.2A
53 – 5.3A
54 – 5.4A

57 – 5.7A
58 – 5.8A
59 – 5.9A
60 – 6.0A
61 – 6.1A
62 – 6.2A
63 – 6.3A
64 – 6.4A
65 – 6.5A
66 – 6.6A
67 – 6.7A
68 – 6.8A

71 – 7.1A
72 – 7.2A
73 – 7.3A
74 – 7.4A
75 – 7.5A
76 – 7.6A
77 – 7.7A
78 – 7.8A
79 – 7.9A
80 – 8.0A

SMSD-4.2LAN
SMSD-8.0LAN

Tallinn Science Park Tehnopol, Akadeemia tee 21/6,
Tallinn 12618, Estonia

Phone: + 372 6559914,
e-mail: mail@smd.ee

url: https://smd.ee
8

13 - 1.3A
14 - 1.4A

27 - 2.7A
28 - 2.8A

41 - 4.1A
42 - 4.2A

55 – 5.5A
56 – 5.6A

69 – 6.9A
70 – 7.0A

STOP_CURRENT – holding current – as a percentage of an operating current:
0 - 25%
1 - 50%
2 - 75%
3 - 100%

4.2. Drive parameter settings

The drive operating parameters can be read or changed using the corresponding Modbus registers, or during

a user program executing.

Address
HEX

Register
type Size Data type Register name Description

Control
1100 HR 16 UINT_DEC MIN_SPEED Minimum motor speed
1101 HR 16 UINT_DEC MAX_SPEED Maximum motor speed
1102 HR 16 UINT_DEC ACC Acceleration
1103 HR 16 UINT_DEC DEC Deceleration
1104 HR 16 UINT_DEC FS_SPEED Full step speed
1105 HR 16 UINT_DEC TARGET_SPEED Target speed
1106 HR 32 INT_DEC TARGET_POS Target position
1108 HR 16 UINT_DEC TARGET_INPUT Input number
1109 HR 16 UINT_HEX CMD Command code
1400 DO 1 BOOL CLR Resetting error flags
1401 DO 1 BOOL Reset Pos Resetting the current position counter
1402 DO 1 BOOL Reset powerSTEP01 Resetting the stepper motor control module
1403 DO 1 BOOL Soft STOP Smooth stop with specified deceleration

and transition to holding mode
1404 DO 1 BOOL Hard STOP Abrupt stop and transition to holding mode
1405 DO 1 BOOL Soft HiZ Smooth stop with specified deceleration

and de-energizing the motor
1406 DO 1 BOOL Hard HiZ Abrupt stop and de-energizing the motor

MIN_SPEED – setting the motor minimum speed. Allowable setting range from 0 to 950 steps/sec. Important: all
speed values are specified as full steps per second, regardless of the set microstepping mode.

MAX_SPEED – setting the motor maximum speed. Allowable setting range from 16 to 15600 steps/sec. Important: all
speed values are specified as full steps per second, regardless of the set microstepping mode.

ACC – stepper motor acceleration value. Allowable setting range from 15 to 59000 steps/sec2.

DEC – stepper motor deceleration value. Allowable setting range from 15 to 59000 steps/sec2.

FS_SPEED – setting the speed of transition to the full-step operating mode. Allowable setting range from 15 to
15600 steps/sec. Important: all speed values are specified as full steps per second, regardless of the set
microstepping mode.

TARGET_SPEED – set value of the stepper motor shaft rotation speed. Allowable setting range from 16 to
15600 steps/sec. Important: all speed values are specified as full steps per second, regardless of the set
microstepping mode.

SMSD-4.2LAN
SMSD-8.0LAN

Tallinn Science Park Tehnopol, Akadeemia tee 21/6,
Tallinn 12618, Estonia

Phone: + 372 6559914,
e-mail: mail@smd.ee

url: https://smd.ee
9

TARGET_POS – setting the value of a displacement or target coordinate for positioning. Allowable setting range from
-2 097 152 to + 2 097 151 steps (microsteps).

TARGET_INPUT – setting the input number for movement commands with input signal conditions.

CMD – command code. Writing a value to the register (see below) will lead to the start of execution of the command
parameterized in registers 0x1100...0x1110.

Valid values for writing to the CMD register:

0x0e - RUN_F – continuous movement in the forward direction at a constant set speed (TARGET_SPEED).

0x0f - RUN_R – continuous movement in the backward direction at a constant set speed (TARGET_SPEED.

0x10 - MOVE_F – offset by a given value (TARGET_POS) in the forward direction. The motion speed is
determined by preset minimum and maximum speed, acceleration and deceleration parameters. The motor
must be stopped before sending this command.

0x11 - MOVE_R – offset by a given value (TARGET_POS) in the backward direction. The motion speed is
determined by preset minimum and maximum speed, acceleration and deceleration parameters. The motor
must be stopped before sending this command.

0x12 - GO_TO_F – moving to a target coordinate (TARGET_POS) in the forward direction. The motion speed
is determined by preset minimum and maximum speed, acceleration and deceleration parameters.

0x13 - GO_TO_R – moving to a target coordinate (TARGET_POS) in the backward direction. The motion
speed is determined by preset minimum and maximum speed, acceleration and deceleration parameters.

0x14 - GO_UNTIL_F – continuous movement in the forward direction at maximum speed until a signal arrives
at a given input (TARGET_INPUT). After receiving the signal, the motor stops with the specified deceleration.
When processing the command, the specified signal mask is taken into account.

0x15 - GO_UNTIL_R – continuous movement in the backward direction at maximum speed until a signal
arrives at a given input (TARGET_INPUT). After receiving the signal, the motor stops with the specified
deceleration. When processing the command, the specified signal mask is taken into account.

0x16 - SCAN_ZERO_F – search for the zero position in the forward direction with a given speed
(TARGET_SPEED). The movement continues until a signal is received at the SET_ZERO input. When a
signal is received, the motor stops and the current position is taken as zero.

0x17 - SCAN_ZERO_R – search for the zero position in the backward direction with a given speed
(TARGET_SPEED). The movement continues until a signal is received at the SET_ZERO input. When a
signal is received, the motor stops and the current position is taken as zero.

0x18 - SCAN_MARK_F – search for the mark position in the forward direction at a given speed
(TARGET_SPEED). The movement continues until a signal arrives at the input IN1. When a signal is
received, the motor stops and the current position is remembered as the mark position.

0x19 - SCAN_MARK_R – search for the mark position in the backward direction at a given speed
(TARGET_SPEED). The movement continues until a signal arrives at the input IN1. When a signal is
received, the motor stops and the current position is remembered as the mark position.

0x1a - GO_ZERO – movement to the zero position.

0x1b - GO_MARK – movement to the mark position.

SMSD-4.2LAN
SMSD-8.0LAN

Tallinn Science Park Tehnopol, Akadeemia tee 21/6,
Tallinn 12618, Estonia

Phone: + 372 6559914,
e-mail: mail@smd.ee

url: https://smd.ee
10

0x1c - GO_TO – moving to a target coordinate (TARGET_POS) along the shortest path.

0x1f - SOFT_STOP – Smooth stop with specified deceleration (DEC) and transition to holding mode After
stopping, the motor holds the position with the specified holding current (STOP_CURRENT).

0x20 - HARD_STOP – Abrupt stop of the stepper motor. After stopping, the motor holds the position with the
specified holding current (STOP_CURRENT).

0x21 - SOFT_HI_Z – Smooth stop of the stepper motor with specified deceleration (DEC), then de-energizing
the motor phases.

0x22 - HARD_HI_Z – Abrupt stop and de-energizing the motor phases.

0x2f - START_PROGRAM_MEM0 – start execution of the user program from the memory 0 of the controller.

0x30 - START_PROGRAM_MEM1 – start execution of the user program from the memory 1 of the controller.

0x31 - START_PROGRAM_MEM2 – start execution of the user program from the memory 2 of the controller.

0x32 - START_PROGRAM_MEM3 – start execution of the user program from the memory 3 of the controller.

0x33 - STOP_PROGRAM_MEM – stopping the execution of a user program.

0x3D - SCAN_MARK2_F – search for the mark position in the forward direction at a given speed
(TARGET_SPEED). The movement continues until a signal arrives at the input IN1. When a signal is
received, the motor stops with specified deceleration (DEC) and the current position is remembered as the
mark position.

0x3E - SCAN_MARK2_R - – search for the mark position in the backward direction at a given speed
(TARGET_SPEED). The movement continues until a signal arrives at the input IN1. When a signal is
received, the motor stops with specified deceleration (DEC) and the current position is remembered as the
mark position.

CLR – Coil – write TRUE to the register to clear all error flags

Reset Pos – Coil – write TRUE to the register to reset the current position counter. After the command is executed,
the current position is taken as zero.

Reset powerSTEP01 – Coil – write TRUE to the register to perform a full hardware and software reset of the stepper
motor control module, but not the controller as a whole.

Soft STOP – Coil – write TRUE to the register to perform a smooth stop of the stepper motor with a specified
deceleration (DEC). After stopping, the motor holds the position with the specified holding current (STOP_CURRENT).

Hard STOP – Coil – write TRUE to the register to perform abrupt stop of the stepper motor. After stopping, the motor
holds the position with the specified holding current (STOP_CURRENT).

Soft HiZ – Coil – write TRUE to the register to perform a smooth stop of the stepper motor with a specified
deceleration (DEC). After the motor stops, the motor phases are de-energized.

Hard HiZ – Coil – write TRUE to the register to perform abrupt stop and are de-energizing of the stepper motor.

SMSD-4.2LAN
SMSD-8.0LAN

Tallinn Science Park Tehnopol, Akadeemia tee 21/6,
Tallinn 12618, Estonia

Phone: + 372 6559914,
e-mail: mail@smd.ee

url: https://smd.ee
11

4.3. Monitoring of operation parameters

Operating parameters can be read from the corresponding registers using commands via the Modbus

protocol.

Address
HEX

Register
type Size Data type Register name Description

Information about the motor current state
1000 IR 16 UINT_DEC SPEED Current motor speed
1001 IR 32 INT_DEC ABS_POS Current motor position
1003 IR 16 UINT_HEX EL_POS Electrical rotor position
1004 IR 16 UINT_HEX STATUS Current state of the controller
1200 DI 1 BOOL HiZ Motor phases state
1201 DI 1 BOOL STOP Motor stop
1202 DI 1 BOOL CONST_SPEED Motor rotates with constant speed
1203 DI 1 BOOL ACC Motor acceleration
1204 DI 1 BOOL DEC Motor deceleration
1205 DI 1 BOOL READY Ready for the next task
1206 DI 1 BOOL SW_F Function SW
1207 DI 1 BOOL SW_EVN SW function event
1208 DI 1 BOOL DIR Direction of rotation
1209 DI 1 BOOL CMD_ERROR Command execution error
Information about user program executing
3000 IR 16 UINT_DEC MODE_N_PROGRAMS Set number of the user program (for

autonomous operation mode)
3200 DI 1 BOOL PROGRAM_RUN Program execution flag
3001 IR 16 UINT_DEC N_PROGRAM Currently running user program
3002 IR 16 UINT_DEC N_COMMAND Line number of the program that is

currently running

SPEED – Current speed of the stepper motor

ABS_POS – Current position of the stepper motor

EL_POS – Information about the current electrical position of the rotor: bits 8.7 – current step, bits 6..0 – current
microstep within the full step (measured as 1/128 of the full step value).

HiZ – Information about motor phases state (powered or de-energized).

STOP – Stepper motor stop flag

CONST_SPEED – Stepper motor constant speed motion flag

ACC – Stepper motor accelerating motion flag

DEC – Stepper motor decelerating motion flag

READY – Flag of readiness to perform the next task.

SW_F – SW function flag: 1- SW function ON, 0 – SW function OFF

SW_EVN – SW function event: 1- if the event has come, 0 – if the event hasn’t come

DIR – Information about stepper motor rotation direction

SMSD-4.2LAN
SMSD-8.0LAN

Tallinn Science Park Tehnopol, Akadeemia tee 21/6,
Tallinn 12618, Estonia

Phone: + 372 6559914,
e-mail: mail@smd.ee

url: https://smd.ee
12

CMD_ERROR – Command execution error flag: 1- command error, 0 – no errors

MODE_N_PROGRAMS – The number of the program that the user has set to run in autonomous operation mode (bF)
via the front panel of the controller.

PROGRAM_RUN – Program execution flag

N_PROGRAM – Number of the currently running user program

N_COMMAND – Line number of the program that is currently running

4.4. Input/output signals

Address
HEX

Register
type Size Data type Register name Description

Inputs/outputs
1005 IR 16 UINT_HEX Inputs State of inputs, state and setting of mask

and waiting for input signals110F HR 16 UINT_HEX Mask
1110 HR 16 UINT_HEX Wait
1407 DO 1 BOOL Relay Relay output control

Inputs – Inputs state

Mask – Input signals mask. When executing commands with input conditions, the signal mask is taken into
account. If the mask of the corresponding signal is 1, the command is executed.

Wait - Waiting for input signals.

Relay – coil – Relay output control

5. Reading and writing user program
The controller allows to create user programs and write them to non-volatile memory. The controller has 4

memory areas for storing programs, every area can hold up to 255 instructions. Reading and writing a program is
possible in blocks - up to 32 instruction lines of program at a time. Each instruction takes 2 Modbus registers (4 bytes
of memory) and has the structure corresponding to the main (standard) transfer protocol for SMSD-LAN controllers:

typedef struct

{

uint32_t RESERVE :4;

uint32_t COMMAND :6;

uint32_t DATA :22;

} SMSD_CMD_Type;

The first 4 bits are reserved and contain 0 when reading/writing program lines. The next 6 bits contain the
command code in accordance with Appendix B. The last 22 bits contain the command data.

Example of reading/writing a command “maximum motor speed” with data value = 100 steps/sec:

The command for setting the maximum speed SET_MAX_SPEED in accordance with Appendix B has code
0x06, in binary form b1100. Command data 100 in binary form b1100100. When writing to the SMSD_CMD_Type
structure, the value is b11001000001100000 = d102496 = 0x00019060. Thus, the command to set the maximum
speed to 100 steps/sec when reading/writing a program looks like 0x00019060.

SMSD-4.2LAN
SMSD-8.0LAN

Tallinn Science Park Tehnopol, Akadeemia tee 21/6,
Tallinn 12618, Estonia

Phone: + 372 6559914,
e-mail: mail@smd.ee

url: https://smd.ee
13

Bit layout of the structure SMSD_CMD_Type:

Byte 3 Byte 2 Byte 1 Byte 0

Bits 0..7 Bits 0..7 Bits 2..7 Bits 0..1 Bits 4..7 Bits 0..3

Command data = 100 = b1100100 Command code = 0x06 =
b110

0 (rezerved)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0

Special Modbus registers are intended for reading/writing programs:

Address
HEX

Register
type Size Data type Register name Description

Programming
3100 HR 32 UINT_HEX CMD 00 Command buffer for writing/reading a

program3102 HR 32 UINT_HEX CMD 01
3104 HR 32 UINT_HEX CMD 02
… HR 32 UINT_HEX …
313E HR 32 UINT_HEX CMD 31
3180 HR 16 UINT_DEC N_PROG Program area number (from 0 to 3).
3181 HR 16 UINT_DEC N_STR Starting address of the instruction to

read/write program
3182 HR 16 UINT_DEC SECTOR_SIZE Number of instructions that will be written

to memory from the buffer or read from
memory to the buffer

3183 HR 16 UINT_DEC PROG_SIZE Total program size
3184 HR 16 UINT_DEC MEM_CMD Writing a value to a register will run the

procedure:
0 – read instructions to the buffer
1 – write instructions from the buffer
2 – erase program (including
PROG_SIZE)
3 – reading program size to the register
PROG_SIZE
4 – recording program size from the
register PROG_SIZE

3400 DO 1 BOOL B_COMPLETE Flag of completing the procedure
(MEM_CMD). Resets manually.

Registers 0x3100...0x3182 are a buffer for storing a packet of instructions for reading or writing. Commands
for working with the controller memory are written to the MEM_CMD register. The B_COMPLETE register is the
completion flag for the command passed to MEM_CMD. When the MEM_CMD command completes, the
B_COMPLETE flag arises. This flag must be cleared manually.

Operations procedure for writing a program of N instructions to the controller memory:

1. Write the number of the memory area for recording the program - N_PROG register (values 0 to 3).

2. Reset the flag B_COMPLETE

3. Execute the memory erase command (write MEM_CMD = 2)

4. Wait until the B_COMPLETE command completion flag is set

5. Reset the flag B_COMPLETE

6. Divide N instructions of the program into n groups, each group with X instructions (x <= 32, since write
buffer size = 32 lines). For each group of X instructions, do the following:

SMSD-4.2LAN
SMSD-8.0LAN

Tallinn Science Park Tehnopol, Akadeemia tee 21/6,
Tallinn 12618, Estonia

Phone: + 372 6559914,
e-mail: mail@smd.ee

url: https://smd.ee
14

6.1. Set the program line number to start writing (N_STR register). The first group of instructions is written
to the line 0 (if the program is supposed to be written to the beginning of the memory). For each
subsequent group this value should be increases by X.

6.2. Set the sector size for writing (SECTOR_SIZE register) – the number of instructions for writing at a
time (SECTOR_SIZE = X).

6.3. Write X instructions to the transfer buffer (registers CMD_00...CMD_31) - one program line (one
instruction) takes 2 data words (two Modbus registers).

6.4. Execute the command to write the instructions from the buffer to the controller memory (MEM_CMD =
1).

6.5. Wait until the B_COMPLETE command completion flag is set

6.6. Reset the flag B_COMPLETE

7. Write the value of the full program size (instructions number) to the register PROG_SIZE = N

8. Execute the write program size command (MEM_CMD = 4)

9. Wait until the B_COMPLETE command completion flag is set

10. Reset the flag B_COMPLETE

Operations procedure for reading a program from the controller memory:
1. Write the number of the memory area for reading the program - N_PROG register

2. Reset the flag B_COMPLETE

3. Execute the command to read the full size of the program (MEM_CMD = 3)

4. Wait until the B_COMPLETE command completion flag is set

5. Reset the flag B_COMPLETE

6. Read the value N - the full size of the program - from the PROG_SIZE register

7. Divide N instructions of the program into n groups, each group with X instructions (x <= 32, since read
buffer size = 32 lines). For each group of X instructions, do the following:

7.1. Set the program line number to start reading (N_STR register). The first group of instructions is read
from the line 0 (if the program is supposed to be read from the beginning of the memory). For each
subsequent group this value should be increases by X.

7.2. Set the sector size for reading (SECTOR_SIZE register) – the number of instructions for reading at a
time (SECTOR_SIZE = X).

7.3. Execute the command to read instructions from the controller memory to the buffer (MEM_CMD = 0)

7.4. Wait until the B_COMPLETE command completion flag is set

7.5. Reset the flag B_COMPLETE

7.6. Read X program lines from the buffer (registers CMD_00...CMD_31) - one program line (one
instruction) takes 2 data words (two Modbus registers).

SMSD-4.2LAN
SMSD-8.0LAN

Tallinn Science Park Tehnopol, Akadeemia tee 21/6,
Tallinn 12618, Estonia

Phone: + 372 6559914,
e-mail: mail@smd.ee

url: https://smd.ee
15

6. Changes in the transfer protocol when connecting via USB
When connected via USB, the standard version of the communication protocol is used, with the exception of

reading and setting LAN parameters.

The field unitID is added to the structure SMSD_LAN_Config_Type.

typedef struct

{ uint8_t mac[6];

 uint8_t ip[4];

 uint8_t sn[4];

 uint8_t gw[4];

 uint8_t dns[4];

 uint16_t Port;

 dhcp_mode dhcp;

 uint8_t unitID;

} SMSD_LAN_Config_Type;

Default settings:

{

 .mac= {0x00, 0xf8, 0xdc,0x3f, 0x00, 0x00},

 .ip = {192, 168, 1, 2},

 .sn = {255,255,0,0},

 .gw = {192, 168, 1, 1},

 .dns= {0,0,0,0},

 .Port = 502,

 .dhcp = 1

 .unitID = 1

};

SMSD-4.2LAN
SMSD-8.0LAN

Tallinn Science Park Tehnopol, Akadeemia tee 21/6,
Tallinn 12618, Estonia

Phone: + 372 6559914,
e-mail: mail@smd.ee

url: https://smd.ee
16

Appendix A. Register table

Register table for the stepper motor controllers SMSD-4.2LAN and SMSD-8.0LAN – version Modbus TCP/IP:

Address
HEX

Register
type Size Data type Register name Description

Authorization
2100 HR 32 UINT_HEX Password_LOW32 Low 32 bits of the password

(default value 0x89ABCDEF)
2102 HR 32 UINT_HEX Password_HIGH32 High 32 bits of the password

 (default value 0x01234567)
2104 HR 16 UINT_DEC Password_CMD Write value:

= 0 - authorization attempt
= 1 - change password

2200 DI 1 BOOL Access Displaying authorization status
FALSE - no access
TRUE - access is allowed

Motor configuration
110A HR 16 UINT_DEC CURRENT_OR_VOLTAGE Control type
110B HR 16 UINT_DEC MOTOR_TYPE Motor model for the voltage control mode
110C HR 16 UINT_HEX MICROSTEPPING Microstepping mode
110D HR 16 UINT_DEC WORK_CURRENT Operating current for the current control

mode
110E HR 16 UINT_DEC STOP_CURRENT Holding current
Motion control
1000 IR 16 UINT_DEC SPEED Minimum motor speed
1001 IR 32 INT_DEC ABS_POS Maximum motor speed
1003 IR 16 UINT_HEX EL_POS Acceleration
1100 HR 16 UINT_DEC MIN_SPEED Deceleration
1101 HR 16 UINT_DEC MAX_SPEED Full step speed
1102 HR 16 UINT_DEC ACC Target speed
1103 HR 16 UINT_DEC DEC Target position
1104 HR 16 UINT_DEC FS_SPEED Input number
1105 HR 16 UINT_DEC TARGET_SPEED Command code
1106 HR 32 INT_DEC TARGET_POS Minimum motor speed
1108 HR 16 UINT_DEC TARGET_INPUT Maximum motor speed
1109 HR 16 UINT_HEX CMD Acceleration
1004 IR 16 UINT_HEX STATUS Current state of the controller
1200 DI 1 BOOL HiZ Motor phases state
1201 DI 1 BOOL STOP Motor stop
1202 DI 1 BOOL CONST_SPEED Motor rotates with constant speed
1203 DI 1 BOOL ACC Motor acceleration
1204 DI 1 BOOL DEC Motor deceleration
1205 DI 1 BOOL READY Ready for the next task
1206 DI 1 BOOL SW_F Function SW
1207 DI 1 BOOL SW_EVN SW function event
1208 DI 1 BOOL DIR Direction of rotation
1209 DI 1 BOOL CMD_ERROR Command execution error
1400 DO 1 BOOL CLR Resetting error flags
1401 DO 1 BOOL Reset Pos Resetting the current position counter
1402 DO 1 BOOL Reset powerSTEP01 Resetting the stepper motor control

module

SMSD-4.2LAN
SMSD-8.0LAN

Tallinn Science Park Tehnopol, Akadeemia tee 21/6,
Tallinn 12618, Estonia

Phone: + 372 6559914,
e-mail: mail@smd.ee

url: https://smd.ee
17

Address
HEX

Register
type Size Data type Register name Description

1403 DO 1 BOOL Soft STOP Smooth stop with specified deceleration
and transition to holding mode

1404 DO 1 BOOL Hard STOP Abrupt stop and transition to holding
mode

1405 DO 1 BOOL Soft HiZ Smooth stop with specified deceleration
and de-energizing the motor

1406 DO 1 BOOL Hard HiZ Abrupt stop and de-energizing the motor
Inputs/outputs
1005 IR 16 UINT_HEX Inputs State of inputs, state and setting of mask

and waiting for input signals110F HR 16 UINT_HEX Mask
1110 HR 16 UINT_HEX Wait
1407 DO 1 BOOL Relay Relay output control
Information about user program executing
3000 IR 16 UINT_DEC MODE_N_PROGRAMS Set number of the user program (for

autonomous operation mode)
3200 DI 1 BOOL PROGRAM_RUN Program execution flag
3001 IR 16 UINT_DEC N_PROGRAM Currently running user program
3002 IR 16 UINT_DEC N_COMMAND Line number of the program that is

currently running
Programming
3100 HR 32 UINT_HEX CMD 00 Command buffer for writing/reading a

program3102 HR 32 UINT_HEX CMD 01
3104 HR 32 UINT_HEX CMD 02
3106 HR 32 UINT_HEX CMD 03
3108 HR 32 UINT_HEX CMD 04
310A HR 32 UINT_HEX CMD 05
310C HR 32 UINT_HEX CMD 06
310E HR 32 UINT_HEX CMD 07
3110 HR 32 UINT_HEX CMD 08
3112 HR 32 UINT_HEX CMD 09
3114 HR 32 UINT_HEX CMD 10
3116 HR 32 UINT_HEX CMD 11
3118 HR 32 UINT_HEX CMD 12
311A HR 32 UINT_HEX CMD 13
311C HR 32 UINT_HEX CMD 14
311E HR 32 UINT_HEX CMD 15
3120 HR 32 UINT_HEX CMD 16
3122 HR 32 UINT_HEX CMD 17
3124 HR 32 UINT_HEX CMD 18
3126 HR 32 UINT_HEX CMD 19
3128 HR 32 UINT_HEX CMD 20
312A HR 32 UINT_HEX CMD 21
312C HR 32 UINT_HEX CMD 22
312E HR 32 UINT_HEX CMD 23
3130 HR 32 UINT_HEX CMD 24
3132 HR 32 UINT_HEX CMD 25
3134 HR 32 UINT_HEX CMD 26
3136 HR 32 UINT_HEX CMD 27
3138 HR 32 UINT_HEX CMD 28
313A HR 32 UINT_HEX CMD 29
313C HR 32 UINT_HEX CMD 30
313E HR 32 UINT_HEX CMD 31

SMSD-4.2LAN
SMSD-8.0LAN

Tallinn Science Park Tehnopol, Akadeemia tee 21/6,
Tallinn 12618, Estonia

Phone: + 372 6559914,
e-mail: mail@smd.ee

url: https://smd.ee
18

Address
HEX

Register
type Size Data type Register name Description

3180 HR 16 UINT_DEC N_PROG Program area number (from 0 to 3).
3181 HR 16 UINT_DEC N_STR Starting address of the instruction to

read/write program
3182 HR 16 UINT_DEC SECTOR_SIZE Number of instructions that will be written

to memory from the buffer or read from
memory to the buffer

3183 HR 16 UINT_DEC PROG_SIZE Total program size
3184 HR 16 UINT_DEC MEM_CMD Writing a value to a register will run the

procedure:
0 – read instructions to the buffer
1 – write instructions from the buffer
2 – erase program (including
PROG_SIZE)
3 – reading program size to the register
PROG_SIZE
4 – recording program size from the
register PROG_SIZE

3400 DO 1 BOOL B_COMPLETE Flag of completing the procedure
(MEM_CMD). Resets manually.

LAN parameters
7000 HR 16 UINT_DEC ID Device ID - identifier in the Modbus TCP

network
7001 HR 16 UINT_HEX MAC 0 MAC address

Default value:
0x00 0xF8 0xDC 0x3F 0x00 0x00

7002 HR 16 UINT_HEX MAC 1
7003 HR 16 UINT_HEX MAC 2
7004 HR 16 UINT_HEX MAC 3
7005 HR 16 UINT_HEX MAC 4
7006 HR 16 UINT_HEX MAC 5
7007 HR 16 UINT_DEC IP 0 IP address

Default value:
192.168.1.2

7008 HR 16 UINT_DEC IP 1
7009 HR 16 UINT_DEC IP 2
700A HR 16 UINT_DEC IP 3
700B HR 16 UINT_DEC Subnet Mask 0 IP sub-network mask

Default value:
255.255.0.0

700C HR 16 UINT_DEC Subnet Mask 1
700D HR 16 UINT_DEC Subnet Mask 2
700E HR 16 UINT_DEC Subnet Mask 3
700F HR 16 UINT_DEC Gateway IP 0 Gateway

Default value:
192.168.1.1

7010 HR 16 UINT_DEC Gateway IP 1
7011 HR 16 UINT_DEC Gateway IP 2
7012 HR 16 UINT_DEC Gateway IP 3
7013 HR 16 UINT_DEC DNS server IP Address 0 DNS

Default value:
0.0.0.0

7014 HR 16 UINT_DEC DNS server IP Address 1
7015 HR 16 UINT_DEC DNS server IP Address 2
7016 HR 16 UINT_DEC DNS server IP Address 3
7017 HR 16 UINT_DEC Port Port

Default value: 502
7018 HR 16 UINT_DEC DHCP Dynamic address setting

1 – Static (default)
2 – DHCP

7400 DO 1 BOOL Apply Network Configuration Apply and save settings
Version and identification registers
8001 IR 16 UINT_DEC HW_MAJOR Device ID:

6 - SMSD-4.2ModbusTCP

SMSD-4.2LAN
SMSD-8.0LAN

Tallinn Science Park Tehnopol, Akadeemia tee 21/6,
Tallinn 12618, Estonia

Phone: + 372 6559914,
e-mail: mail@smd.ee

url: https://smd.ee
19

Address
HEX

Register
type Size Data type Register name Description

7 - SMSD-8.0ModbusTCP
8002 IR 16 UINT_DEC HW_VER Hardware version: 1
8003 IR 16 UINT_DEC FW_MAJOR Firmware version: 1.3
8004 IR 16 UINT_DEC FW_MINOR
8007 IR 16 UINT_DEC RM_MAJOR Register map version: 4.3
8008 IR 16 UINT_DEC RM_MINOR

SMSD-4.2LAN
SMSD-8.0LAN

Tallinn Science Park Tehnopol, Akadeemia tee 21/6,
Tallinn 12618, Estonia

Phone: + 372 6559914,
e-mail: mail@smd.ee

url: https://smd.ee
20

Appendix B. Controller executing instructions
Executing instruction CMD_PowerSTEP01_SET_MODE

Executing instruction CMD_PowerSTEP01_SET_MODE = 0x03 is intended for setting motor and control
parameters. The motor windings must be de-energized at the moment the command is executed.

Bit mapping of the Data field of the SMSD_CMD_Type structure:

21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S
TO

P
_C

U
R

R
E

N
T

W
O

R
K

_C
U

R
R

E
N

T

M
IC

R
O

ST
E

PP
IN

G

M
O

TO
R

_T
Y

P
E

C
U

R
R

E
N

T_
O

R
_

V
O

LT
AG

E

The values at the fields CURRENT_OR_VOLTAGE, MOTOR_TYPE, MICROSTEPPING, WORK_CURRENT,
STOP_CURRENT correspond to the similar registers in the section «4.1. Motor configuration».

Executing instruction CMD_PowerSTEP01_SET_MIN_SPEED

Executing instruction CMD_PowerSTEP01_SET_MIN_SPEED = 0x05 is intended for setting the motor
minimum speed. The DATA field should contain the speed value in range 0 – 950 steps/sec. Important: all speed
values are specified as full steps per second, regardless of the set microstepping mode.

Executing instruction CMD_PowerSTEP01_SET_MAX_SPEED

Executing instruction CMD_PowerSTEP01_SET_MAX_SPEED = 0x06 is intended for setting the motor
maximum speed. The DATA field should contain the speed value in range 16 – 15600 steps/sec. Important: all speed
values are specified as full steps per second, regardless of the set microstepping mode.

Executing instruction CMD_PowerSTEP01_SET_ACC

Executing instruction CMD_PowerSTEP01_SET_ACC = 0x07 is intended for setting the motor acceleration to
getting the motor maximum speed. The DATA field should contain the acceleration value in range 15 – 59000
steps/sec2.

Executing instruction CMD_PowerSTEP01_SET_DEC

Executing instruction CMD_PowerSTEP01_SET_DEC = 0x08 is intended for setting the motor deceleration to
getting the motor maximum speed. The DATA field should contain the acceleration value in range 15 – 59000
steps/sec2

Executing instruction CMD_PowerSTEP01_SET_FS_SPEED

Executing instruction CMD_PowerSTEP01_SET_FS_SPEED = 0x09 is intended for setting the running
speed, when the motor switches to a full step mode. The DATA field should contain the speed value in range 15 –
15600 steps/sec. Important: all speed values are specified as full steps per second, regardless of the set
microstepping mode.

SMSD-4.2LAN
SMSD-8.0LAN

Tallinn Science Park Tehnopol, Akadeemia tee 21/6,
Tallinn 12618, Estonia

Phone: + 372 6559914,
e-mail: mail@smd.ee

url: https://smd.ee
21

Executing instruction CMD_PowerSTEP01_SET_MASK_EVENT

Executing instruction CMD_PowerSTEP01_SET_MASK_EVENT = 0x0A is intended for masking input
signals. If the input signal MASK value = 1 – the Controller handles the signal state at the physical input. If the signal
MASK is 0 – the controller doesn’t take a care the physical input state.

Bit mapping of the Data field of the SMSD_CMD_Type structure:

21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

M
as

k_
7

M
as

k_
6

M
as

k_
5

M
as

k_
4

M
as

k_
3

M
as

k_
2

M
as

k_
1

M
as

k_
0

Mask_X – Masking of the input X.

Executing instruction CMD_PowerSTEP01_RUN_F

Executing instruction CMD_PowerSTEP01_RUN_F = 0x0E is intended to start motor rotation in forward
direction at designated speed. The DATA field should contain the final rotation speed value in range 15 – 15600
steps/sec. Important: all speed values are specified as full steps per second, regardless of the set microstepping
mode.

Executing instruction CMD_PowerSTEP01_RUN_R

Executing instruction CMD_PowerSTEP01_RUN_F = 0x0E is intended to start motor rotation in backward
direction at designated speed. The DATA field should contain the final rotation speed value in range 15 – 15600
steps/sec. Important: all speed values are specified as full steps per second, regardless of the set microstepping
mode.

Executing instruction CMD_PowerSTEP01_MOVE_F

Executing instruction CMD_PowerSTEP01_MOVE_F = 0x10 is intended for motor displacement in forward
direction. The DATA field should contain the displacement value in range –(2^21)…+(2^21-1). The motion speed is
determined by specified minimum and maximum speed and acceleration value. The motor should be stopped before
executing this command (field Mot_Status of the powerSTEP_STATUS_Type structure = 0). Important: the speed
commands are always set as full steps per second. The motion commands are always set as microstepping measured
displacements.

Executing instruction CMD_PowerSTEP01_MOVE_R

Executing instruction CMD_PowerSTEP01_MOVE_F = 0x10 is intended for motor displacement in backward
direction. The DATA field should contain the displacement value in range –(2^21)…+(2^21-1). The motion speed is
determined by specified minimum and maximum speed and acceleration value. The motor should be stopped before
executing this command (field Mot_Status of the powerSTEP_STATUS_Type structure = 0). Important: the speed
commands are always set as full steps per second. The motion commands are always set as microstepping measured
displacements.

Executing instruction CMD_PowerSTEP01_GO_TO_F

Executing instruction CMD_PowerSTEP01_GO_TO_F = 0x12 is intended for motor displacement to the
specified position in forward direction. The DATA field should contain the position value in range –(2^21)…+(2^21-1).
The motion speed is determined by specified minimum and maximum speed and acceleration value. Important: the
speed commands are always set as full steps per second. The motion commands are always set as microstepping
measured displacements.

SMSD-4.2LAN
SMSD-8.0LAN

Tallinn Science Park Tehnopol, Akadeemia tee 21/6,
Tallinn 12618, Estonia

Phone: + 372 6559914,
e-mail: mail@smd.ee

url: https://smd.ee
22

Executing instruction CMD_PowerSTEP01_GO_TO_R

Executing instruction CMD_PowerSTEP01_GO_TO_R = 0x13 is intended for motor displacement to the
specified position in backward direction. The DATA field should contain the position value in range –(2^21)…+(2^21-
1). The motion speed is determined by specified minimum and maximum speed and acceleration value. Important: the
speed commands are always set as full steps per second. The motion commands are always set as microstepping
measured displacements.

Executing instruction CMD_PowerSTEP01_GO_UNTIL_F

Executing instruction CMD_PowerSTEP01_GO_UNTIL_F = 0x14 is intended for the motor forward motion at
the maximum speed until receiving a signal at the input SW (taking into account the signal masking). After that the
motor decelerates and stops. The MASK state of the signal can be changed by the executing instruction
CMD_PowerSTEP01_SET_MASK_EVENT.

Executing instruction CMD_PowerSTEP01_GO_UNTIL_R

Executing instruction CMD_PowerSTEP01_GO_UNTIL_R = 0x15 is intended for the motor backward motion
at the maximum speed until receiving a signal at the input SW (taking into account the signal masking). After that the
motor decelerates and stops. The MASK state of the signal can be changed by the executing instruction
CMD_PowerSTEP01_SET_MASK_EVENT.

Executing instruction CMD_PowerSTEP01_SCAN_ZERO_F

Executing instruction CMD_PowerSTEP01_SCAN_ZERO_F = 0x16 is intended for searching zero position in
a forward direction. The movement continues until signal to SET_ZERO input received. The DATA field determines
the motion speed during searching the zero position. Important: the speed commands are always set as full steps per
second.

Executing instruction CMD_PowerSTEP01_SCAN_ZERO_R

Executing instruction CMD_PowerSTEP01_SCAN_ZERO_R = 0x17 is intended for searching zero position in
backward direction. The movement continues until signal to SET_ZERO input received. The DATA field determines
the motion speed during searching the zero position. Important: the speed commands are always set as full steps per
second.

Executing instruction CMD_PowerSTEP01_SCAN_MARK_F

Executing instruction CMD_PowerSTEP01_SCAN_MARK_F = 0x18 is intended for searching MARK position
in a forward direction. The movement continues until signal to IN1 input received. The DATA field determines the
motion speed during searching the MARK position. Important: all speed values are specified as full steps per second,
regardless of the set microstepping mode.

Executing instruction CMD_PowerSTEP01_SCAN_MARK_R

Executing instruction CMD_PowerSTEP01_SCAN_MARK_R = 0x19 is intended for searching MARK position
in backward direction. The movement continues until signal to IN1 input received. The DATA field determines the
motion speed during searching the MARK position. Important: all speed values are specified as full steps per second,
regardless of the set microstepping mode.

Executing instruction CMD_PowerSTEP01_GO_ZERO

Executing instruction CMD_PowerSTEP01_GO_ZERO = 0x1A is intended for movement to the ZERO
position. Data field is ignored.

Executing instruction CMD_PowerSTEP01_GO_LABEL

Executing instruction CMD_PowerSTEP01_GO_LABEL = 0x1B is intended for movement to the MARK
position. Data field is ignored.

SMSD-4.2LAN
SMSD-8.0LAN

Tallinn Science Park Tehnopol, Akadeemia tee 21/6,
Tallinn 12618, Estonia

Phone: + 372 6559914,
e-mail: mail@smd.ee

url: https://smd.ee
23

Executing instruction CMD_PowerSTEP01_GO_TO

Executing instruction CMD_PowerSTEP01_GO_TO = 0x1C 0x1C is intended for the shortest movement to
the specified position. Important: the speed commands are always set as full steps per second. The motion
commands are always set as microstepping measured displacements.

Executing instruction CMD_PowerSTEP01_RESET_POS

Executing instruction CMD_PowerSTEP01_RESET_POS = 0x1D is intended to set ZERO position (to clear
internal steps counter and specify a current position as a ZERO position). Data field is ignored.

Executing instruction CMD_PowerSTEP01_RESET_POWERSTEP01

Executing instruction CMD_PowerSTEP01_RESET_POWERSTEP01 = 0x1E is intended for hardware and
software reset of the stepper motor control module, but not of the whole Controller.. Data field is ignored.

Executing instruction CMD_PowerSTEP01_SOFT_STOP

Executing instruction CMD_PowerSTEP01_SOFT_STOP = 0x1F is intended for smooth decelerating of the
stepper motor and stop. After that the motor holds the current position (with preset holding current).. Data field is
ignored.

Executing instruction CMD_PowerSTEP01_HARD_STOP

Executing instruction CMD_PowerSTEP01_HARD_STOP = 0x20 is intended for sudden stop of the stepper
motor and holding the current position (with preset holding current). Data field is ignored.

Executing instruction CMD_PowerSTEP01_SOFT_HI_Z

Executing instruction CMD_PowerSTEP01_SOFT_HI_Z = 0x21 is intended for smooth decelerating of the
stepper motor and stop. After that the motor phases are deenergized. Data field is ignored.

Executing instruction CMD_PowerSTEP01_HARD_HI_Z

Executing instruction CMD_PowerSTEP01_HARD_HI_Z = 0x22 is intended for sudden stop and
deenergizing the stepper motor. Data field is ignored.

Executing instruction CMD_PowerSTEP01_SET_WAIT

Executing instruction CMD_PowerSTEP01_SET_WAIT = 0x23 is intended for setting pause. The DATA field
contains the waiting time measured as ms. Allowed value range 0 – 3600000 ms.

Executing instruction CMD_PowerSTEP01_SET_RELE

Executing instruction CMD_PowerSTEP01_SET_RELE = 0x24 is intended to turn on the controller relay.
Data field is ignored.

Executing instruction CMD_PowerSTEP01_CLR_RELE

Executing instruction CMD_PowerSTEP01_CLR_RELE = 0x25 is intended to turn off the controller relay.
Data field is ignored.

Executing instruction CMD_PowerSTEP01_WAIT_IN0

Executing instruction CMD_PowerSTEP01_WAIT_IN0 = 0x27 is used to wait until receiving a signal to the
input IN0. Data field is ignored.

Executing instruction CMD_PowerSTEP01_WAIT_IN1

Executing instruction CMD_PowerSTEP01_WAIT_IN1 = 0x28 is used to wait until receiving a signal to the
input IN1. Data field is ignored.

SMSD-4.2LAN
SMSD-8.0LAN

Tallinn Science Park Tehnopol, Akadeemia tee 21/6,
Tallinn 12618, Estonia

Phone: + 372 6559914,
e-mail: mail@smd.ee

url: https://smd.ee
24

Executing instruction CMD_PowerSTEP01_GOTO_PROGRAM

Executing instruction CMD_PowerSTEP01_GOTO_PROGRAM = 0x29 is intended for unconditional
branching – to jump to a specified instruction number in a specified program number. The DATA field contains the
information about a program memory number and instruction sequence number: bits 0..7 of the DATA field contain
the instruction number, bits 8,9 of the DATA field contain the program number..

Bit mapping of the Data field of the SMSD_CMD_Type structure:

21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 Program Number Instruction number

Executing instruction CMD_PowerSTEP01_GOTO_PROGRAM_IF_IN0

Executing instruction CMD_PowerSTEP01_GOTO_PROGRAM_IF_IN0 = 0x2A is intended for conditional
branching – to jump to a specified instruction number in a specified program number if there is a signal at the input
IN0. The DATA field contains the information about a program memory number and instruction sequence number: bits
0..7 of the DATA field contain the instruction number, bits 8,9 of the DATA field contain the program number.

Bit mapping of the Data field of the SMSD_CMD_Type structure:

21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 Program Number Instruction number

Executing instruction CMD_PowerSTEP01_GOTO_PROGRAM_IF_IN1

is intended for conditional branching – to jump to a specified command number in a specified program number
if there is a signal at the input IN1. The DATA field contains the information about a program memory number and
instruction sequence number: bits 0..7 of the DATA field contain the instruction number, bits 8,9 of the DATA field
contain the program number.

Bit mapping of the Data field of the SMSD_CMD_Type structure:

21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 Program Number Instruction number

Executing instruction CMD_PowerSTEP01_LOOP_PROGRAM

Executing instruction CMD_PowerSTEP01_LOOP_PROGRAM = 0x2C is used to create a loop – the
controller repeats specified times specified number of instructions (start from the first instruction after this instruction.
The DATA field contains the information about instruction s number and cycles number: bits 0..9 of the DATA field
contain the instructions number, bits 10..19 of the DATA field contain the cycles number.

Bit mapping of the Data field of the SMSD_CMD_Type structure:

21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 Cycles number Number of instructions in the loop

Executing instruction CMD_PowerSTEP01_CALL_PROGRAM

Executing instruction CMD_PowerSTEP01_CALL_PROGRAM = 0x2D is intended for calling a subprogram.
The DATA field contains the information about a program memory number and a instruction sequence number, which
starts a subprogram: bits 0..7 of the DATA field contain the instruction number, bits 8,9 of the DATA field contain the
program number. For returning back to the main program, the subprogram should contain a RETURN instruction -
CMD_PowerSTEP01_RETURN_PROGRAM. The subprogram is executed until the
CMD_PowerSTEP01_RETURN_PROGRAM and after that returns to the next command of the main program after
CMD_PowerSTEP01_CALL_PROGRAM.

SMSD-4.2LAN
SMSD-8.0LAN

Tallinn Science Park Tehnopol, Akadeemia tee 21/6,
Tallinn 12618, Estonia

Phone: + 372 6559914,
e-mail: mail@smd.ee

url: https://smd.ee
25

Bit mapping of the Data field of the SMSD_CMD_Type structure:

21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 Program Number Instruction number

Executing instruction CMD_PowerSTEP01_RETURN_PROGRAM

Executing instruction CMD_PowerSTEP01_RETURN_PROGRAM = 0x2E is used to specify the end of a
subprogram and to return back to the main program. If previously the instruction
CMD_PowerSTEP01_CALL_PROGRAM was not called, the executing of
CMD_PowerSTEP01_RETURN_PROGRAM will call an error.

Executing instruction CMD_PowerSTEP01_START_PROGRAM_MEM0

Executing instruction CMD_PowerSTEP01_START_PROGRAM_MEM0 = 0x2F is used to start program
executing from the controller memory area Mem0. Data field is ignored.

instructions CMD_PowerSTEP01_START_PROGRAM_MEM1 = 0x30,
CMD_PowerSTEP01_START_PROGRAM_MEM2 = 0x31, CMD_PowerSTEP01_START_PROGRAM_MEM3 = 0x32
are used to start program executing from the controller memory areas Mem1, Mem2, Mem3 accordingly.

Executing instruction CMD_PowerSTEP01_STOP_PROGRAM_MEM

Executing instruction CMD_PowerSTEP01_STOP_PROGRAM_MEM = 0x33 is used to stop executing a
program. Data field is ignored.

Executing instruction CMD_PowerSTEP01_GOTO_PROGRAM_IF_ZERO

Executing instruction CMD_PowerSTEP01_GOTO_PROGRAM_IF_ZERO = 0x39 is intended for conditional
branching – to jump to a specified instruction number in a specified program number if the current position value is 0.
The DATA field contains the information about a program memory number and a instruction sequence number: bits
0..7 of the DATA field contain the instruction number, bits 8,9 of the DATA field contain the program number.

Bit mapping of the Data field of the SMSD_CMD_Type structure:

21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 Program Number Instruction number

Executing instruction CMD_PowerSTEP01_GOTO_PROGRAM_IF_IN_ZERO

Executing instruction CMD_PowerSTEP01_GOTO_PROGRAM_IF_IN_ZERO = 0x3A is intended for
conditional branching – to jump to a specified instruction number in a specified program number if there is a signal at
the input SET_ZERO. The DATA field contains the information about a program memory number and a instruction
sequence number: bits 0..7 of the DATA field contain the instruction number, bits 8,9 of the DATA field contain the
program number.

Bit mapping of the Data field of the SMSD_CMD_Type structure:

21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 Program Number Instruction number

Executing instruction CMD_PowerSTEP01_WAIT_CONTINUE

Executing instruction CMD_PowerSTEP01_WAIT_CONTINUE = 0x3B is intended for waiting of
synchronization signal at the input CONTINUE, which is used for synchronization of executing programs in different
controllers. Data field is ignored.

SMSD-4.2LAN
SMSD-8.0LAN

Tallinn Science Park Tehnopol, Akadeemia tee 21/6,
Tallinn 12618, Estonia

Phone: + 372 6559914,
e-mail: mail@smd.ee

url: https://smd.ee
26

Executing instruction CMD_PowerSTEP01_SET_WAIT_2

Executing instruction CMD_PowerSTEP01_SET_WAIT_2 = 0x3C is intended for setting a pause. The DATA
field contains the waiting time measured as ms. Allowed value range 0 – 3600000 ms. Unlike with the similar
instruction CMD_PowerSTEP01_SET_WAIT, executing of this instruction can be interrupted by input signals IN0, IN1
or SET_ZERO..

Executing instruction CMD_PowerSTEP01_SCAN_MARK2_F

Executing instruction CMD_PowerSTEP01_SCAN_MARK2_F = 0x3D is intended for searching MARK
position in a forward direction. The movement continues until signal to IN1 input received. The DATA field determines
the motion speed during searching the MARK position. The motor stops according to the deceleration value, current
position is set as MARK position. Important: all speed values are specified as full steps per second, regardless of the
set microstepping mode.

Executing instruction CMD_PowerSTEP01_SCAN_MARK2_R

Executing instruction CMD_PowerSTEP01_SCAN_MARK2_R = 0x3E is intended for searching MARK
position in a backward direction. The movement continues until signal to IN1 input received. The DATA field
determines the motion speed during searching the MARK position. The motor stops according to the deceleration
value, current position is set as MARK position. Important: all speed values are specified as full steps per second,
regardless of the set microstepping mode.

Last modified 31 May 2024

